.. _ml-pipelines:
Machine Learning Pipeline Integration
======================================
Guide to integrating machine learning pipelines with Buildly applications.
.. contents:: Table of Contents
:local:
:depth: 2
Overview
--------
Buildly supports integration of machine learning pipelines for AI-powered features. This guide covers ML workflow integration, model training, and deployment within the Buildly ecosystem.
.. note::
**Coming Soon:** This documentation is being actively developed. Check back for comprehensive ML pipeline integration guides.
Architecture
------------
ML Pipeline Components
~~~~~~~~~~~~~~~~~~~~~~
**Core Components:**
- **Data Ingestion** - Collect and prepare training data
- **Feature Engineering** - Transform raw data into features
- **Model Training** - Train ML models with prepared data
- **Model Validation** - Evaluate model performance
- **Model Deployment** - Deploy models for inference
- **Monitoring** - Track model performance in production
**Buildly Integration Points:**
.. code-block:: python
# Example ML service integration
# Coming Soon: Full implementation examples
class MLPipelineService:
"""Service for ML pipeline operations"""
def train_model(self, dataset_id):
"""Train a new model"""
pass
def predict(self, model_id, features):
"""Make predictions"""
pass
def evaluate(self, model_id, test_data):
"""Evaluate model performance"""
pass
Supported Frameworks
--------------------
**Popular ML Frameworks:**
- scikit-learn
- TensorFlow
- PyTorch
- XGBoost
- LightGBM
**Coming Soon:**
- Detailed integration guides for each framework
- Best practices for model versioning
- Production deployment strategies
- A/B testing frameworks
Data Management
---------------
Dataset Handling
~~~~~~~~~~~~~~~~
.. code-block:: python
# Example dataset management
# Coming Soon: Complete implementation
class Dataset(models.Model):
name = models.CharField(max_length=255)
version = models.CharField(max_length=50)
file_path = models.CharField(max_length=500)
schema = models.JSONField()
created_at = models.DateTimeField(auto_now_add=True)
Model Training
--------------
Training Pipeline
~~~~~~~~~~~~~~~~~
**Coming Soon:**
- Automated training workflows
- Hyperparameter tuning
- Cross-validation strategies
- Distributed training setup
Model Registry
--------------
Versioning and Storage
~~~~~~~~~~~~~~~~~~~~~~
**Coming Soon:**
- Model versioning system
- Model artifact storage
- Metadata tracking
- Model lifecycle management
Inference Integration
---------------------
API Endpoints
~~~~~~~~~~~~~
**Coming Soon:**
- RESTful inference endpoints
- Batch prediction APIs
- Real-time prediction services
- Caching strategies
Monitoring and Logging
-----------------------
Performance Tracking
~~~~~~~~~~~~~~~~~~~~
**Coming Soon:**
- Model performance monitoring
- Data drift detection
- Prediction logging
- Alert systems
Resources
---------
**External Resources:**
- `scikit-learn Documentation `_
- `TensorFlow Guide `_
- `MLflow `_
**Video Resources:**
- `Buildly YouTube Channel `_ - AI and machine learning integration tutorials
- `OpenBuild YouTube Channel `_ - ML pipeline development guides
**Next Steps:**
- :doc:`/ai/model-deployment` - Deploying ML models
- :doc:`/backend/api-development` - Building ML APIs
.. note::
This section is under active development. Comprehensive guides for ML pipeline integration will be added soon. Check the Buildly GitHub organization for example implementations.