.. _ml-pipelines: Machine Learning Pipeline Integration ====================================== Guide to integrating machine learning pipelines with Buildly applications. .. contents:: Table of Contents :local: :depth: 2 Overview -------- Buildly supports integration of machine learning pipelines for AI-powered features. This guide covers ML workflow integration, model training, and deployment within the Buildly ecosystem. .. note:: **Coming Soon:** This documentation is being actively developed. Check back for comprehensive ML pipeline integration guides. Architecture ------------ ML Pipeline Components ~~~~~~~~~~~~~~~~~~~~~~ **Core Components:** - **Data Ingestion** - Collect and prepare training data - **Feature Engineering** - Transform raw data into features - **Model Training** - Train ML models with prepared data - **Model Validation** - Evaluate model performance - **Model Deployment** - Deploy models for inference - **Monitoring** - Track model performance in production **Buildly Integration Points:** .. code-block:: python # Example ML service integration # Coming Soon: Full implementation examples class MLPipelineService: """Service for ML pipeline operations""" def train_model(self, dataset_id): """Train a new model""" pass def predict(self, model_id, features): """Make predictions""" pass def evaluate(self, model_id, test_data): """Evaluate model performance""" pass Supported Frameworks -------------------- **Popular ML Frameworks:** - scikit-learn - TensorFlow - PyTorch - XGBoost - LightGBM **Coming Soon:** - Detailed integration guides for each framework - Best practices for model versioning - Production deployment strategies - A/B testing frameworks Data Management --------------- Dataset Handling ~~~~~~~~~~~~~~~~ .. code-block:: python # Example dataset management # Coming Soon: Complete implementation class Dataset(models.Model): name = models.CharField(max_length=255) version = models.CharField(max_length=50) file_path = models.CharField(max_length=500) schema = models.JSONField() created_at = models.DateTimeField(auto_now_add=True) Model Training -------------- Training Pipeline ~~~~~~~~~~~~~~~~~ **Coming Soon:** - Automated training workflows - Hyperparameter tuning - Cross-validation strategies - Distributed training setup Model Registry -------------- Versioning and Storage ~~~~~~~~~~~~~~~~~~~~~~ **Coming Soon:** - Model versioning system - Model artifact storage - Metadata tracking - Model lifecycle management Inference Integration --------------------- API Endpoints ~~~~~~~~~~~~~ **Coming Soon:** - RESTful inference endpoints - Batch prediction APIs - Real-time prediction services - Caching strategies Monitoring and Logging ----------------------- Performance Tracking ~~~~~~~~~~~~~~~~~~~~ **Coming Soon:** - Model performance monitoring - Data drift detection - Prediction logging - Alert systems Resources --------- **External Resources:** - `scikit-learn Documentation `_ - `TensorFlow Guide `_ - `MLflow `_ **Video Resources:** - `Buildly YouTube Channel `_ - AI and machine learning integration tutorials - `OpenBuild YouTube Channel `_ - ML pipeline development guides **Next Steps:** - :doc:`/ai/model-deployment` - Deploying ML models - :doc:`/backend/api-development` - Building ML APIs .. note:: This section is under active development. Comprehensive guides for ML pipeline integration will be added soon. Check the Buildly GitHub organization for example implementations.